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Abstract

The extent to which European seasonal precipitation is predictable is a topic of

scientific and societal importance. Although the potential for seasonal prediction

is much less over Europe than in the tropics it is not negligible. Previous studies

suggest that European seasonal precipitation skill may peak in the spring (March-

April-May) period, this being the season when ENSO teleconnections to the north

Atlantic and European sector are at their strongest. Examination of the correlation

significance and temporal stability of contemporaneous and lagged ENSO links to

European and north African precipitation over 98 years confirms this to be the case.

The strongest ENSO links are found across the Central European (CE) region [45oN-

55oN, 35oE-5oW]. These links are symmetric with the sign of ENSO. Using a linear

statistical model employing temporally stable lagged ENSO and lagged local north

Atlantic sea surface temperatures as predictors, we compute the forecast skill and

significance of CE spring precipitation over 30 independent years. For early March

forecasts our model skill is 14-18% better than climatology which is significant at

the 95% level.

Keywords: ENSO, Europe, forecast, precipitation, seasonal, SST.
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1 Introduction

The long-range forecasting of seasonal mean rainfall is attracting increasing interest

as society, industry and government attempt to minimise the risk, uncertainty and

financial volatility associated with unseasonal weather. Seasonal prediction is based

upon the premise that the lower atmosphere is forced by large-scale anomalous sur-

face processes. Since these surface forcings evolve at a slower rate than the weather

systems of interest they can be used to predict anomalies in large scale atmospheric

behaviour over long (seasonal) periods of time (e.g. Gilchrist 1986, Barnston &

Smith 1996, Rowell 1998, Anderson 2000). Recent assessments of seasonal precip-

itation predictability using coupled general circulation models (e.g. Branković &

Palmer 2000, Graham et al. 2000, Doblas-Reyes et al. 2000) indicate that skillful

forecasts may be possible for northern extratropical regions. Whilst the potential for

prediction is much lower than that found for the tropics, it is generally not negligible

and is seen to peak around the spring March-April-May (MAM) period (Branković

et al. 1994, Doblas-Reyes et al. 2000, Graham et al. 2000). Predictability is found

to be higher in ENSO extreme years (Branković & Palmer 2000), implying that at

least part of the available skill can be attributed to forcing from the tropical Pacific

ocean.

The influence of ENSO on European climate has been discussed by many authors,

with the review articles by Moron & Ward (1998) and Fraedrich (1994) providing

a good introduction. On a more regional scale, Wilby (1993) relates changes in

weather type over the British Isles to ENSO activity. Concerning precipitation,

the most promising finding is that identified by Kiladis & Diaz (1989) between
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wintertime ENSO and springtime rain in Europe. van Oldenborgh et al. (2000)

demonstrate the statistical significance of this relationship for the period 1857-1998.

They find that it explains 24% of the variance in MAM precipitation over the region

47.5oN - 52.5oN, 35oE-5oW.

Whilst the effect of ENSO on European seasonal precipitation appears signif-

icant, local climate factors may also be important. In particular, anomalous sea

surface temperatures (SSTs) over the North Atlantic are thought to influence Euro-

pean seasonal weather (e.g. Czaja & Frankignoul 1999, Drévillon et al. submitted,

2001). Colman & Davey (1999) describe an empirical forecast scheme for summer

temperature, rainfall, and pressure in Europe based on wintertime north Atlantic

SSTs.

Two broad types of prediction model - dynamical and statistical - are employed

in current seasonal forecasts. While dynamical prediction schemes should, in theory,

eventually be superior to statistical models, this is not the case at present. Studies

assessing current capabilities of the two model types show that the best statistical

models are as good as, if not better, than the best dynamical seasonal models

(Barnston et al. 1999, Anderson et al. 1999, Landsea & Knaff 2000). Furthermore,

this situation has not changed in recent years (Barnston et al. 1999). A recent

analysis of the performance of 12 real-time seasonal forecasting schemes during the

strong 1997-98 El Niño found that the best performing model for forecasting the

entirety of the event was the statistical ENSO-CLIPER model (Landsea & Knaff

2000).

This paper describes a statistical forecasting scheme for MAM central Euro-
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pean precipitation based on significant lagged relationships to wintertime ENSO

and North Atlantic SST. Primary emphasis is placed on predictor stability. Model

performance is assessed over thirty years of independent data. Section 2 describes

the methodology, including the data, predictor selection, predictor stability, and

model skill assessment. Section 3 presents the results from two models, one based

solely on ENSO, the other combining ENSO and local SST predictors. Section 4

discusses the results, and conclusions are drawn in Section 5.

2 Methodology

2.1 Data

Gridded precipitation data are taken from the monthly 0.5 degree set compiled by

the Climatic Research Unit at the University of East Anglia (New et al. 2000). These

data cover the period 1901-1998. Gridded SST data for 1901-1949 are taken from

the monthly 5.0 degree United Kingdom Met Office Global Ice and Sea Surface Tem-

perature (GISST) data set version 2.3b [which is an update of version 2.2 (Rayner

et al. 1996)], and for 1950-1998 from the monthly 2.5 degree NCEP/NCAR global

reanalysis data set (Kalnay et al. 1996, Kistler et al. 2001). The ENSO NINO3 SST

index we employ comes from the SST reconstruction of Kaplan et al. (1998).

2.2 Prediction Model

We employ a simple linear regression model comprising a set of k parameters (a0,1,...,k)

which relate one or more predictors (x1,2,...,k) to a single predictand (y):
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y = a0 + a1 · x1 + a2 · x2 + · · ·+ ak · xk (1)

Stability in time is fundamental to the utility of any empirical forecast scheme.

In this study, predictor-predictand relationships are deemed to be temporally stable

if they are statistically robust over the period 1901-1998, as well as over the two

sub-periods 1901-1949 and 1950-1998. This is formalised by use of the Chow test

statistic as used in economics (Chow 1960, Stewart 1991):

Chow =
SSEC − (SSE1 + SSE2)

k

/
SSE1 + SSE2

L− 2k
(2)

This is F-distributed and measures the ratio of the sum of the squares obtained

from the full regression (SSEC) against the sum of the squares obtained from two

adjacent subsets of the data (SSE1,2), where the two subsets combine to form the

whole series of length L.

Any change in the regression parameters (a0,1,..k) over time will result in an in-

crease in SSEc relative to SSE1,2. Thus we test whether the parameters remain

constant over time. Specifically, we examine the null hypothesis (that the regres-

sion coefficients are the same for both subsets of the data), against the alternative

hypothesis (that the regression coefficients are not the same for both subsets of the

data). Failure to reject the null hypothesis (at some specified level) is taken to

imply stability. Relationships which yield F-probabilities of greater than 5% are

considered to be stable.
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2.3 Skill Assessment

2.3.1 Separate Training and Forecast Intervals

The firm separation of training and forecast periods is fundamental for true skill as-

sessment. This distinction ensures that hindcasts are applied always to independent

data, thus making the model skill the true forecast skill. We achieve this separa-

tion by using an initial training period of 1901-1968, leaving 1969-1998 (30 years)

for model forecast assessment. The training period increases one year at a time as

each forecast is made. For example, an independent forecast for 1969 is built using

1901-1968 data to identify the potential predictors and compute the regression coef-

ficients. Similarly, an independent forecast for 1970 is trained using data up to and

including 1969, and so on.

2.3.2 Skill Measures

Several methods are in common use to assess the skill of forecast models (e.g. Wilks

1995, von Storch & Zwiers 1999). We employ the percentage of variance explained

(PVE), the percentage improvement in mean absolute error over a climatological

forecast (MAEcl), and the percentage improvement in root mean square error over

a climatological forecast (RMSEcl). The RMSEcl and MAEcl skill measures are the

most robust. Climatology is taken as the long term average prior to each year being

forecast.

7



2.3.3 Statistical Confidence of Model Skill

We compute confidence intervals on our forecast skill using the bootstrap method

(Efron 1979; also see e.g. Efron & Gong 1983, LePage & Billiard 1992, Wilks

1995). This tests the hypothesis that the model forecasts are more skillful than

those from climatology to some level of significance. We apply the bootstrap by

randomly selecting (with replacement) thirty predictand (or actual) values from the

original thirty hindcast years. This provides a new set of hindcasts for which each

verification measure (RMSEcl, MAEcl and PVE) can be calculated. This process is

repeated many times (25,000 in this case) and the results histogrammed to give the

required distributions. Provided that the original data points are independent (in

distribution and order), the distribution of these recalculated parameters maps the

uncertainty in the forecast skill about the original value. 95% two-tailed confidence

intervals for this uncertainty are then readily obtained.

2.3.4 Other Considerations

Other considerations which will help users make effective use of forecasts include in-

formation on forecast bias (the correspondence between the average forecast and the

average observed value), and forecast sharpness (the characteristic where forecasts

which show little deviation from climatology are said to possess ‘low sharpness’,

whereas forecasts which often differ significantly from climatology are described as

being ‘sharp’).
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2.4 Predictor and Predictand Selection

2.4.1 Stability of the ENSO teleconnection

Following van Oldenborgh et al. (2000), ENSO is represented by the NINO3 region

[5oS-5oN, 90oW-150oW] SST index. Figure 1a shows the Pearson product moment

correlation coefficients (r)of the December-January-February (DJF) average NINO3

and March-April-May (MAM) precipitation over Europe (1901-1998). Significance,

assessed using Student’s t-test against the null hypothesis of no correlation, is shown

by shading at the 5% and 1% levels. The areas of significant lagged correlation are

in good accordance with previous studies (e.g. Kiladis & Diaz 1989, van Oldenborgh

et al. 2000). Significant positive correlations are observed in a band crossing Central

Europe from England and Wales to the northern Black Sea. Significant negative

correlations are present over north Africa and in southeast Spain.

Figure 1b, and Figure 1c illustrate spatial correlations obtained by regressing

NINO3DJF (the subscript representing the season) onto MAM precipitation for the

sub-periods 1901-1949 and 1950-1998 respectively. Considerable variation is seen be-

tween the two panels. In the first half of the twentieth century, significant positive

correlations are found across Bulgaria, Romania, Hungary, and Poland, extending

westward into Germany. Significant negative correlations are evident over Alge-

ria and northeast Morocco. The same north-south dipole-like response of European

rainfall anomaly to ENSO is also seen in the latter half of the twentieth century, with

positive correlations to the north, and negative correlations to the south. However,

the positive centre is displaced westward into the Netherlands, northern France,

England, and Wales. A second positive centre is located across the Ukraine, ex-
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tending north into Russia, and southwest to the Caspian Sea. The negative centre

previously found over Algeria, is now displaced northwest over Morocco and into

southeast Spain.

Such spatial instability severely limits the potential for predictability over small

areas. The study by Koster & Suarez (1995) indicates that ocean variability has a

stronger influence on precipitation when the latter is averaged over larger spatial

scales. Examining Figure 1, suggests two possible regions suitable for agglomera-

tion. The first comprises the region [45oN-55oN, 35oE-5oW] spanning central Europe

and encompassing a land area of 5 x 106 km2. Precipitation over this region will

henceforth be referred to as Central European Precipitation (CEP). This region is

similar to that studied by van Oldenborgh et al. (2000) but covers twice the merid-

ional area. Whilst the pattern correlation between the CEP subsections of Figures

1b and 1c is negligible (r = 0.02), the correlations for the area averaged quantity

CEPMAM versus NINO3DJF are r = 0.52 (1901-1949) and r = 0.45 (1950-1998). A

bootstrapped estimate of the error on the correlation for the period 1901-1998 gives

a 95% confidence range of 0.33 to 0.62. A second study area is defined to cover the

extreme northwest of Africa. This comprises the region [30oN-35oN, 15oE-10oW], a

land area of 1.3x106 km2. Precipitation over this second region will henceforth be

termed Northwest African Precipitation (NAP).

In a comprehensive analysis, CEP and NAP were regressed onto NINO3 for all

seasons at lags of 0, 3, 6, and 9 months, for the period 1901-1998. The results are

displayed in Figure 2a for CEP, and in Figure 2b for NAP. A peak in correlation

is observed between CEP spring (CEPMAM ) and NINO3 at a lag of 3 months (i.e.
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NINO3DJF ) at r=0.49. This result is almost identical to that reported by van Olden-

borgh et al. (2000). A similar correlation influence (but of opposite sign) is observed

between NAPMAM and NINO3DJF , with r=-0.47. A secondary correlation peak is

seen between the autumn season September-October-November NAP (NAPSON)

and the NINO3 summer June-July-August (NINO3JJA) index, with r=0.24. The

NAP results are similar to those reported by Rodo et al. (1997) for station data

across southeast Spain.

The parameter temporal stability of these results, as judged by the Chow test,

are presented in Table 1. It can be seen that the CEPMAM -NINO3DJF relationship is

the most stable of the ENSO teleconnection influences on European seasonal precip-

itation. The corresponding NAP relationship is less stable, i.e. with a Chow value of

1.75 we can reject the null hypothesis (that the regression parameters are constant

in time) at the 18% level. Possible temporal instability in NAP was suspected by

Ropelewski & Halpert (1987), and reported by Rodo et al. (1997). Inspection of

Figure 1, suggests this result is not surprising considering the large spatial variation

within the small area encompassed by NAP. The NAPSON -NINO3JJA relationship

is stable, but as it accounts for only a small (6%) fraction of the seasonal variance

in rainfall, it is unlikely to be useful for predictive purposes.

As an aside, it is worthwhile to comment on a further teleconnection between

ENSO and late summer precipitation over southern Iberia. Defining the southern

Iberian region as [35oN-40oN, 0oW-5oW] and taking the area average, we construct

a measure representative of rainfall in this region. Correlating this with NINO3

for JAS 1950-1996 gives r = 0.61. Incorporating data for the strong El Niño of
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1997, causes this to rise to r = 0.66. This contrasts with r = −0.15 for the period

1901-1949. Considering the long record 1901-1998 gives r = 0.25, the Chow value

for this period is 8.1 (F-prob=0.001) indicating severe temporal instability. The

Chow values for the two sub-periods indicate stability within themselves. Thus,

depending on the length of record available, we conclude either: (1) There is a strong,

stable relationship between precipitation in late summer over southern Iberia and

concurrent sea surface temperature in the equatorial Pacific (most recent 50 years

of data); or (2) The summer southern Iberian teleconnection is weak and unstable

(100 years of data). This example illustrates the need for long period records when

assessing the utility of such relationships for predictive purposes.

2.4.2 Symmetry of the ENSO teleconnection

Implicit in the use of linear regression is the assumption of a symmetrical response

in the predictand to predictors of opposite sign. To investigate the symmetry of

the MAM precipitation response to El Niño and La Niña events, the data were

partitioned into years corresponding to the ten highest and ten lowest values of the

NINO3DJF index for each half of the century. This facilitates a comparison of the

location and strength of the response to each type of event. Figures 3a-3d show the

resultant MAM average precipitation anomaly fields for each of the four composites.

The anomalies are relative to the long term seasonal average for the whole century.

In general the patterns are symmetric in both location and magnitude within each

half century, but not between the two halves. It is noteworthy that the response in

the first half century is slightly stronger in La Niña years, whilst in the latter half

century, the response is slightly stronger in El Niño years. The observed shifts in
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the centres of action closely resemble those seen in the correlation maps shown in

Figure 1. The close correspondence between patterns of opposite extrema supports

the view that the ENSO teleconnection influence on European spring precipitation is

symmetric with the sign of ENSO and that the use of linear regression is appropriate.

2.4.3 Local SST

The strength and consistency of the relationship between NINO3DJF and CEPMAM

suggests it represents something more than a random statistical association. How-

ever, the proportion of the CEPMAM variance 1901-1998 which can be explained by

equatorial Pacific SST is only 24%. The model study of Davies et al. (1997) and the

empirical work of Folland & Woodcock (1986), suggest that additional long-range

predictability may be available over European coastal regions by including the di-

rect effect of adjacent SST anomalies. The work of Czaja & Frankignoul (1999)

and Drévillon et al. (submitted, 2001) suggest that anomalies in the North Atlantic

atmospheric circulation may be related to previous SST conditions in the North

Atlantic.

Local effects are investigated in isolation from the ENSO response by construct-

ing a new precipitation time series, CEP
′
MAM from the residuals generated when

NINO3DJF is regressed onto CEPMAM . Spatial correlation maps between this resid-

ual error series and the MAM concurrent North Atlantic SST, are shown in Figure

4. The ENSO-only model over predicts when SST is cooler than normal in the

North Sea, Bay of Biscay, and Western Mediterranean, and vice versa. Whilst this

contemporaneous observation is interesting, it is of little practical value in forecast-

ing precipitation unless it too can be reliably predicted. Indeed, we may simply be
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observing the oceanic response to the same anomalies in the atmospheric circulation

which are giving rise to the precipitation fields of interest.

Figure 5 shows the correlation relationship between the CEP
′
MAM residual er-

ror series above, and the December-January-February lagged North Atlantic SST,

SSTDJF , for each half of the twentieth century. Stable correlations are observed in

waters west of the British Isles, extending southward along the coast of Portugal

and North Africa. A local SST index (LSST) is defined as the area average SST in

the region [40oN-60oN, 10oW-20oW] west of Ireland. LSSTDJF correlates at r=-0.28

with CEP
′
MAM . The correlation between LSSTDJF and CEB

′
MAM is -0.21 for the

period 1901-1949 and -0.36 for the period 1950-1998. A bootstrapped estimate of

the error on the correlation for the period 1901-1998 gives a 95% confidence range

of -0.09 to -0.46.

The Atlantic region encompassed by LSST exhibits significant decadal trend. It

is possible that much of the observed correlation could arise (misleadingly) from

monotonic changes in both LSSTDJF and CEB
′
MAM attributable to decadal trend.

A low pass filter with a cut-off frequency of 10 years was used to estimate the low

frequency component for each time series, which was then subtracted from the raw

data. The correlation was repeated using the detrended data and found to be -0.24,

thus implying that the majority of the correlation between LSSTDJF and CEB
′
MAM

arises from interannual covariability and not from decadal trend.

LSSTDJF is also almost independent from ENSO (r(LSSTDJF ,NINO3DJF )=-

0.1). The CEP
′
MAM -LSSTDJF relationship has a Chow value of 0.43 with a corre-

sponding F-probability of 0.65. Such a high F-probability is a firm indication that
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the relationship is temporally stable. We note that LSST is similar to the Region 3

defined by Folland & Woodcock (1986) in their experimental mean sea level pressure

forecasts for the United Kingdom.

2.5 Results

Given the near statistical independence of the two influences on CEPMAM identified

above, it is reasonable to construct a multiple linear regression of NINO3DJF and

LSSTDJF onto CEPMAM for the period 1901-1998.

The parameters a1,2, corresponding to the predictors NINO3DJF and LSSTDJF ,

together with their standard errors and significances are summarised in Table 2.

It can be seen that both parameters and the constant (ao) are significant at the

1% level (tested against the null hypothesis of ak = 0). This regression explains

over 30% of the variance in CEPMAM 1901-1998. Analysis of the residuals from

this regression shows them to be normally distributed, homoscedastic, and devoid

of significant auto-correlation; characteristics satisfying the requirements for linear

regression.

The level of the variance explained by the combined influence of NINO3DJF

and LSSTDJF may be sufficiently high to be useful for seasonal forecasting. Nicholls

(1984) hypothesises that given the potential non-stationarity within predictor-predictand

time series, the optimum training period to use in deriving a predictive equation may

not be that which contains all the available data. This question was examined using

hindcasts with training periods of length n, ranging from 10 to 68 years. For each

n, we made 30 independent predictions of CEPMAM covering the period 1969-1998;
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e.g. for n=10 we use 1988-1997 data to predict 1998, we use 1987-1996 data to pre-

dict 1997, and so on back to 1969. Each set of predictions was then compared with

the corresponding set of observations. Statistics were calculated for bias, root mean

square error (RMSE), mean absolute error (MAE), and correlation (r), as defined

in the standard way (Wilks 1995) These are shown as a function of n in Figure 6.

The gradual improvement seen in all the statistics as the training period increases,

is indicative of stability and suggests that the regression parameters are asymptoti-

cally approaching values representative of the complete population. RMSE tends to

a value of about 18mm, MAE tends to 15mm and the correlation coefficient tends

to r ≈ 0.55. Model bias is always small (less than 4mm), peaking at 3.5mm for a

training period of 23 years.

A final set of thirty year hindcasts 1969-1998 were performed for the NINO3DJF

and LSSTDJF regression model using all the available training data.This was achieved

by extending the training period by one year as new data became available. Thus,

1969 was predicted using a model trained on 1901-1968 data, 1970 was predicted

using a model trained on 1901-1969 data, etc.. The results are shown as a scatter

plot of predicted versus actual values in Figure 7. The graph is divided into four

quadrants relative to the CEPMAM climatology 1961-1990. Table 3 summarises the

CEPMAM seasonal forecast skill both for the above model and, for comparison, the

NINO3DJF only model.
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3 Discussion

From Figure 7 and Table 3 it can be seen that whilst our early March CEPMAM

forecast models are not sharp, nor particularly accurate, they exhibit useful skill

which is 14-18% better than climatology. From Table 3 it can be seen that the com-

bined NINO3DJF -LSSTDJF model improves upon the skill of the NINO3DJF model.

However, it is clear that most of the skill in both models comes from the two well

predicted El Niño extreme years of 1983 and 1998. When the 30-year hindcasts are

repeated with the 1983 and 1998 strong ENSO years removed, the NINO3DJF and

LSSTDJF model skill falls to 8% (RMSEcl) and 4% (MAEcl), while the NINO3DJF

only model skill falls to 7% (RMSEcl) and 3% (MAEcl). Thus the ENSO extreme

years are contributing ∼10% of the 14-18% objective skill improvement over clima-

tology.

Histograms of the bootstrapped values of RMSEcl and MAEcl are shown in Figure

8 for the NINO3DJF and LSSTDJF model. The model deterministic skill scores are

shown by the solid vertical lines, and the 95% confidence intervals are marked by

the dashed vertical lines. The latter are also shown in Table 3. They demonstrate

that the hindcast skill values are significant at close to the 95% confidence level.

This result is reinforced by the vast majority of the 25,000 skill score realisations

being positive (95% for RMSEcl and 87% for MAEcl). Given the unbounded nature

of the skill scores, this is firm evidence that the forecast scheme possesses real skill.

We also note that both distributions are skewed slightly towards negative values.

This skewness is an artifact of the skill score measures. For example, if we consider

RMSEcl, its positive values are constrained to a maximum value of 100%, while
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its negative values are not and will tend to negative infinity for forecasts far worse

than climatology. These different tendencies give rise to the skewed distribution of

RMSEcl, and similarly for MAEcl.

The basic mechanism for the interaction between ENSO and European precipita-

tion is poorly understood. Until this understanding improves, a thorough assessment

of the utility of the results presented here can not be made. However, it is known

that ENSO exerts a positive forcing on tropical north Atlantic SSTs and this effect

is strongest in boreal spring (MAM) (Enfield & Mayer 1997). Thus, the ENSO in-

fluence on CEPMAM may be an extension of this influence. More than one physical

mechanism has been proposed to explain the ENSO teleconnection to the tropical

north Atlantic. The favoured mechanism involves anomalous Walker circulation

leading, during warm (cold) ENSO phases, to increased (decreased) subsidence over

the tropical north Atlantic, and to warming (cooling) of the underlying SSTs (Kid-

son 1975, Saravanan & Chang 2000, Sutton et al. 2000). An alternative mechanism

invokes the propagation of Rossby-like wave disturbances via the extratropics into

the northwest tropical Atlantic (Nobre & Shukla 1996). Other studies supporting

a dynamical basis for an ENSO influence on European climate include the concep-

tual work of Bjerknes (1966), and modelling studies by Davies et al. (1997) and

Venzke et al. (1999). Bjerknes [ibid ] describes how ENSO modulates the Aleutian

Low which in turn leads to large scale effects downwind. The Aleutian Low, and

its effect on high latitude circulation, is known to vary on a decadal scale (Over-

land et al. 1999). Increased understanding of such processes may well clarify the

response of European MAM precipitation to ENSO forcing, and thus, lead to more
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reliable seasonal forecasts over better defined areas. Dynamical studies using cou-

pled GCMs with prescribed SSTs are likely to play an important role in increasing

this understanding.

4 Conclusions

Partitioning the data in time and by the phase of ENSO reveals changes, over the

first and second halves of the twentieth century, in the response of the European

precipitation field to forcing by SST anomalies in the equatorial Pacific. Large scale

area averaging yields temporally stable relationships, but only at the expense of

spatial resolution. Results from an empirical model show that up to 30% of the

variance in springtime precipitation over the region [45oN-55oN, 35oE-5oW] can be

predicted beforehand using a combination of ENSO and local North Atlantic SST

forcings. This is close to the maximum predictable atmospheric variance over Europe

found by model studies examining the relative magnitudes of SST forced atmospheric

variability to internal (unpredictable) atmospheric variability (e.g. Koster & Suarez

1995, or Davies et al. 1997).

We find that spring is the most predictable season for European precipitation.

This supports dynamical model studies which show less ensemble spread and thus

less internal atmospheric variability in the spring (e.g. Branković et al. 1994). Ob-

jectively, this equates to an improvement of around 18% (14%) in RMSE (MAE)

over a climatological forecast when predicting March-April-May precipitation across

central Europe from wintertime SSTs. Confidence intervals, estimated by the boot-

strap method, show that this skill is significant at around the 95% level.
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Although it is easy to think of people who would be interested in a seasonal

forecast for a point, or even a country, it is difficult to envisage the use for a forecast

spanning an area of as large as 5 x 106 km2 as the CEP region. It is unfortunate

that this appears to be the scale required to obtain stable statistical predictive

relationships for European seasonal precipitation.
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Branković C, Palmer TN. 2000. Seasonal skill and predictability of ECWMF
PROVOST ensembles. Quarterly Journal of the Royal Meteorological Society.
126:2035–2067.
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Correlation Parameter Stability
ChowTeleconnection r n
Value

F-probability

NINO3DJF -CEPMAM +0.49 98 0.31 0.73
NINO3DJF -NAPMAM -0.47 98 1.75 0.18
NINO3JJA-NAPSON +0.24 98 0.78 0.46

Table 1: Probability values for correlation and temporal stability for lagged ENSO
influences on European seasonal precipitation discussed herein. F-probabilities are
computed by comparing regression parameters on two equal (1901-1949 and 1950-
1998) subsets of the data.
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Parameter Value Standard Error p-value
a0 5440 1820 1%
a1 10.4 2.0 0.1%
a2 -18.5 6.4 1%

Table 2: Summary of parameter values from regression of NINO3DJF and LSSTDJF

onto CEPMAM using 1901-1998 data.
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NINO3DJF and LSSTDJF Model NINO3DJF Model
Skill Measure for 95% Confidence 95% Confidence

CEPMAM Precipitation
n Skill

Interval
n Skill

Interval
RMSEcl (%) 30 18 -3 to 34 30 16 -4 to 32
MAEcl (%) 30 14 -11 to 31 30 12 -14 to 28

PVE 30 31 6 to 58 30 28 4 to 55

Table 3: Seasonal forecast skill for spring (MAM) precipitation over the central
European area [45oN to 55oN, 35oE to 5oW] from winter (DJF) SSTs. Skill is
assessed from true independent forecasts made over 30 years (1969-1998), and is
shown for the three skill measures and the two forecast models discussed herein.
The 95% confidence intervals are computed by bootstrapping 25,000 randomisations
of the hindcast data.
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(a) 1901-1998
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Figure 1: Maps of Pearson product moment correlation for NINO3DJF versus MAM
precipitation (a) 1901-1998, (b) 1901-1949, and (c) 1950-1998. Shading shows the
5% and 1% significance levels.
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Figure 2: Correlation by season of (a) CEP, and (b) NAP versus NINO3DJF for lags
of 0, 3, 6, and 9 months 1901-1998. Horizontal lines correspond to the 5%, 1%, and
0.1% p-values. Shading highlights the seasons where the lagged or contemporaneous
ENSO influence on precipitation is significant at the 5% p-value or below.
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(a) High Composite 1901-1949

15oW 0 15oE 30oE 45oE

30oN

40oN

50oN

60oN

70oN

Anomaly (mm)

-30 -15  15  30

(b) Low Composite 1901-1949
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(c) High Composite 1950-1998
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(d) Low Composite 1950-1998
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Figure 3: Spring precipitation anomalies corresponding to ENSO extremes. Each
composite map displays the average MAM precipitation anomaly following the 10
most positive ENSODJF winters (a) 1901-1949, (c) 1950-1998, and following the
10 most negative ENSODJF winters (b) 1901-1949, (d) 1950-1998. Anomalies are
calculated relative to the long term climatology (1901-1998).
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Figure 4: Maps of Pearson product moment correlation for CEP
′
MAM versus local

contemporaneous SST MAM (a) 1901-1998, (b) 1901-1949, and (c) 1950-1998.
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(a) 1901−1998
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Figure 5: Maps of Pearson product moment correlation for CEP
′
MAM versus local

lagged SST DJF (a) 1901-1998, (b) 1901-1949, and (c) 1950-1998.
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Figure 6: Hindcast performance for predicting CEPMAM from NINO3DJF and
LSSTDJF as a function of the number of years in the training period (n). All
models are for the period 1969-1998 and only prior data are used in building the
regressions. BIAS is bias, MAE is mean absolute error, RMSE is root mean square
error, and r is the correlation coefficient.
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Figure 7: Scatter plot of hindcast results 1969-1998 for the prediction of CEPMAM

from NINO3DJF and LSSTDJF using data from 1901. Only data from years prior
to the year being forecast are used in building the model. The horizontal and
vertical lines represent the 1961-1990 climatology. The dotted line represents a
perfect forecast.

33



(a)

−30 −20 −10 0 10 20 30 40 50
% Improvement in RMSE over Climatology

0

1000

2000

3000

0

N
um

be
r 

of
 O

cc
ur

en
ce

s

 −3.0  33.7

(b)

−30 −20 −10 0 10 20 30 40 50
% Improvement in MAE over Climatology

0

1000

2000

3000

0

N
um

be
r 

of
 O

cc
ur

en
ce

s

−11.0  30.8

Figure 8: Bootstrapped skill score distributions for the hindcast period 1969-1998
based on (a) RMSEcl, and (b) MAEcl. The solid vertical line represents the point
estimate of skill score, while the dashed lines mark the 95% two-tailed confidence
interval.
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